Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Study of nuclear quadrupole interactions and quadrupole Raman processes of 69 Ga and 71 Ga in a β -Ga₂O₃:Cr³⁺ single crystal

Tae Ho Yeom^a, Ae Ran Lim^{b,*}

^a Division of Applied Science, Cheongju University, Cheongju 360-764, Republic of Korea ^b Department of Science Education, Jeonju University, Jeonju 560-759, Republic of Korea

ARTICLE INFO

Article history: Received 15 April 2009 Revised 14 June 2009 Available online 6 August 2009

Keywords: Nuclear magnetic resonance Crystal growth Optical materials Relaxation times

ABSTRACT

Nuclear magnetic resonance (NMR) data and the spin–lattice relaxation times, T_1 , of ⁶⁹Ga and ⁷¹Ga nuclei in a β -Ga₂O₃:Cr³⁺ single crystal were obtained using FT NMR spectrometry. Four sets of NMR spectra for ⁶⁹Ga (I = 3/2) and ⁷¹Ga (I = 3/2) were obtained in the crystallographic planes. The ⁶⁹Ga and ⁷¹Ga nuclei each had two chemically inequivalent Ga₁ and Ga₁₁ centers. Each of the ⁶⁹Ga and ⁷¹Ga isotopes yielded two different central NMR resonance lines originating from Ga₁ and Ga₁₁ sites. The nuclear quadrupole coupling constants and asymmetry parameters of ⁶⁹Ga₁, ⁶⁹Ga₁, ⁷¹Ga₁, and ⁷¹Ga₁₁ centers in a β -Ga₂O₃:Cr³⁺ crystal were obtained. Analysis of the EFG tensor principal axes (PAs) for Ga nuclei and the ZFS tensor PAs for the Cr³⁺ ion confirmed that the Cr³⁺ paramagnetic impurity ion substitutes for the Ga³⁺ ion in the oxygen octahedron. In addition, the temperature dependencies of the ⁶⁹Ga and ⁷¹Ga relaxation rates were consistent with Raman processes, as $T_1^{-1} \propto T^2$. Even though the Cr³⁺ impurities are paramagnetic, the relaxations were dominated by electric quadrupole interactions of the nuclear spins in the temperature range investigated.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Transparent conducting oxides (TCOs) are key materials in state-of-the-art optoelectronics. TCOs are used in a variety of devices including flat-panel displays and solar energy conversion devices. Among the TCOs reported to date, gallium oxide $(\beta$ -Ga₂O₃) has the widest band gap energy of 4.8 eV [1], is transparent from the visible into the UV region [2], and demonstrates thermal stability because of a high melting point [3]. Interest in β -Ga₂O₃ continues, because it is a relatively new material with a number of potential applications in optoelectronics and gas sensing. β-Ga₂O₃ may also be used as a host material in electroluminescent devices [4,5]. β -Ga₂O₃ is intrinsically an insulator with a band gap of 4.8 eV. The material becomes n-type semiconducting when synthesized under reducing conditions. The n-type semiconductivity is known to arise because of a slight oxygen deficit in the crystal lattice [6]. The electrical conductivity of β -Ga₂O₃ at elevated temperatures is markedly and reversibly altered in the presence of oxidizing or reducing gases.

β-Ga₂O₃ has a monoclinic crystal structure and belongs to the space group $C_{2h}^3 - C2/m$ with lattice parameters a = 1.2214 nm, b = 0.30371 nm, and c = 0.57981 nm, and $\beta = 103.83^{\circ}$ [7–9]. Melting points of $T_{\rm m} = 1740 \,^{\circ}$ C [7,8] or 1807 $^{\circ}$ C [10] have been reported

* Corresponding author. Fax: +82 (0)63 220 2053.

in the literature. The unit cell contains four Ga_2O_3 molecules. Two chemically distinguishable cationic sites are coordinated either tetrahedrally or octahedrally with oxygen ions. The crystal structure is a double chain of GaO_6 octahedra, Ga_1 , arranged parallel to the *b*-axis of the lattice, which is connected by GaO_4 tetrahedra, Ga_{II} , as shown in Fig. 1. The crystal has two cleavage planes, perpendicular to the *a*- and *c*-axes, respectively.

A nuclear magnetic resonance (NMR) study of ⁶⁹Ga and ⁷¹Ga nuclei in pure β -Ga₂O₃ single crystals grown by the Verneuil method [11] has been performed [12]. These studies, which disclosed all ⁶⁹Ga and ⁷¹Ga resonances, yielded eight sets of NMR parameters; these eight sets of resonance lines originated from a twin structure. Also, electron paramagnetic resonance (EPR) studies of Cr³⁺ [13,14] in β -Ga₂O₃ single crystals have been reported.

The spin–lattice relaxation times of nuclei in a crystal reflect crystal dynamics, such as nucleus–phonon interactions, and indicate how easily the excited state energy of the nuclear system can be transferred into the lattice. In the present study, the behavior of Ga in a β -Ga₂O₃:Cr³⁺ single crystal was explored using NMR and relaxation time measurements. To obtain detailed information on crystal dynamics, it was necessary to measure spin–lattice relaxation times, T_1 , of constituent ⁶⁹Ga and ⁷¹Ga nuclei.

In the present study, the NMR properties of ⁶⁹Ga and ⁷¹Ga in a β -Ga₂O₃:Cr³⁺ single crystal were investigated using a Pulse NMR spectrometer. Four sets of Ga NMR spectra were obtained in the crystallographic planes at room temperature and analyzed using

E-mail addresses: aeranlim@hanmail.net, arlim@jj.ac.kr (A.R. Lim).

^{1090-7807/\$ -} see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2009.07.008

Fig. 1. Projection of the β -Ga₂O₃ single crystal unit cell structure onto the *ca*-plane.

the Zeeman and nuclear quadrupole Hamiltonians. The quadrupole coupling constants (e^2qQ/h), asymmetry parameters (η), and directions of the principal tensor axes of electric field gradients (EFGs) of the ⁶⁹Ga and ⁷¹Ga centers in the β -Ga₂O₃:Cr³⁺ single crystal were determined and compared with those of previous reports. In addition, the spin–lattice relaxation times, T_1 , of both ⁶⁹Ga and ⁷¹Ga nuclei were investigated in detail as a function of temperature. This work will enhance understanding of nuclear relaxation processes in the crystal.

2. Experimental

Single crystals of β -Ga₂O₃ doped with Cr³⁺ (0.05 mol%) were grown using a floating zone method [14]. Crystallographic axes were determined by the X-ray Laue approach. No twin domain structure was found by X-ray, NMR, or EPR. Ga NMR measurements were conducted using a Bruker FT NMR spectrometer (MSL 200 model) of the Korea Basic Science Institute. The static magnetic field was 4.7 T and central rf frequencies for ⁶⁹Ga and ⁷¹Ga nuclei were set at $\omega_0/2\pi = 48.0372$ MHz and $\omega_0/2\pi =$ 61.0296 MHz, respectively. The free induction decay (FID) of ⁶⁹Ga and ⁷¹Ga NMR was recorded with a single pulse sequence, 5000 scans, and a repetition time of 0.5 s on each crystallographic plane. A pulse length of 1 μ s (90° pulse) was used. For T_1 measurements, a $\pi - t - \pi/2$ inversion recovery pulse sequence was employed. The width of the π pulse was 2 µs for both ⁶⁹Ga and ⁷¹Ga. Sample temperatures were maintained at constant values by controlling helium flow and heater current, with an accuracy of ±0.5 °C.

Typical NMR spectra of ⁶⁹Ga and ⁷¹Ga in the β -Ga₂O₃:Cr³⁺ crystal in an arbitrary external magnetic field at room temperature are shown in Fig. 2(a) and (b), respectively. These spectra were obtained by Fourier transforming the FID of Ga (I = 3/2) NMR. Only central resonance lines are observed because of a large quadrupole interaction. The spectra of each of the ⁶⁹Ga and ⁷¹Ga nuclei consist of two sets of resonance lines, denoted as Ga₁ at the six-oxygen octahedron (Ga₁ center) and Ga₁₁ at the four-oxygen tetrahedron (Ga₁₁ center). The resonance lines from ⁶⁹Ga at the octahedral site and ⁶⁹Ga₁₁ center, respectively. The resonance lines from ⁷¹Ga at the octahedral site and the ⁶⁹Ga₁₁ center, respectively. The resonance lines from ⁷¹Ga at the octahedral site and the ⁷¹Ga₁₁ center and the ⁷¹Ga₁₁ center, respectively. The central line widths of the ⁶⁹Ga₁₁, ⁶⁹Ga₁₁, ⁷¹Ga₁₁, and ⁷¹Ga₁₁ centers were ($\Delta \nu$)_{FWHM} \approx 5.0–5.8 kHz, depending on the direction of the applied field with respect to the crystallographic axes.

We defined five directions as follows: a, b, c, a^* , and c^* . The first three directions are those of the principal crystallographic axes, and the last two are perpendicular to the *bc*-plane and *ab*-plane,

Fig. 2. Typical NMR absorption spectra of (a) ^{69}Ga and (b) ^{71}Ga nuclei in a β -Ga_2O_3:Cr^{3+} single crystal at room temperature.

respectively. The resonance absorption spectra of ⁶⁹Ga and ⁷¹Ga nuclei in the β -Ga₂O₃:Cr³⁺ crystal were observed at intervals of 10° as the crystal was rotated through 180°. The experimental resonance frequencies of ⁶⁹Ga and ⁷¹Ga nuclei measured on the crystallographic *ba*b*- and *bc*b*-planes are plotted in Figs. 3 and 4 as closed circles and closed rectangles, respectively, together with other data calculated as described below.

The resonance frequencies changed during crystal rotation with respect to the magnetic field. To obtain the actual Ga NMR frequencies in Figs. 3 and 4, 48.0372 MHz and 61.0294 MHz should be added to the frequencies in the graphs for ⁶⁹Ga and ⁷¹Ga, respectively. The rotational angles in Figs. 3 and 4 are with reference to the crystallographic *b*-axis. We tried to adjust crystal mounting so that NMR spectral extrema along the *b*-axis in the *ba***b*- and *bc***b*-planes coincided. The crystallographic data show that the *b*-axis is parallel to the monoclinic direction of the crystal, consistent with previous reports [3,9].

3. Analysis and discussion

3.1. $e^2 qQ/h$ and η of ${}^{69}Ga$ and ${}^{71}Ga$ nuclei

NMR spectra of ⁶⁹Ga (I = 3/2, natural abundance 60.4%) and ⁷¹Ga (I = 3/2, natural abundance 39.6%) centers were analyzed with the

Fig. 3. Rotation patterns of nuclear magnetic resonance frequencies for the ⁶⁹Ga nucleus in (a) the ba^*b -plane and (b) the bc^*b -plane. The experimental data at octahedral and tetrahedral sites of ⁶⁹Ga centers are plotted using solid circles and solid rectangles, respectively. The solid lines are calculated resonance frequencies obtained from simulations using the parameters in Table 1.

usual Hamiltonian. The $e^2 qQ/h$ and η values, and the EFG tensor directions for the ⁶⁹Ga and ⁷¹Ga nuclei in the β -Ga₂O₃ crystal were determined using a computer program (EPR/NMR version 6.0) [15] with exact diagonalization of the Hamiltonian matrices. Here the "laboratory" axes used for Hamiltonian analysis are labeled with lowercase letters (*x*, *y*, *z*). These were chosen to coincide with the crystallographic axes *a*, *b*, and *c**. The principal EFG tensor axes are labeled with uppercase letters (*X*, *Y*, *Z*). The input parameter set was optimized using a nonlinear least-squares routine, to minimize weighted differences between observed and calculated transition frequencies.

NMR absorption spectra of Ga nuclei in a β -Ga₂O₃:Cr³⁺ single crystal were observed in the crystallographic *ba*b*- and *bc*b*-planes. There are four molecules of Ga₂O₃ in the unit cell. There are two chemically nonequivalent gallium ion groups. One group is at the octahedral site Ga₁ and the other at the tetrahedral site Ga₁₁. The four Ga nuclei of Ga₁ site in the unit cell were magnetically and chemically equivalent, as were the other four Ga nuclei of Ga₁₁. Therefore, only two distinct sets of resonance lines can be obtained by Ga NMR of the unit cell: one set from the Ga₁₁ center and the other four Ga nuclei on each crystallographic plane, as shown in Figs. 3 and 4. It transpired that the Ga nuclei (Ga₁ center) at the oxygen octahedron yielded two different central resonance lines because the Ga atoms were a

Fig. 4. Rotation patterns of nuclear magnetic resonance frequencies for the ⁷¹Ga nucleus in (a) the *ba*b*-plane and (b) the *bc*b*-plane. The experimental data from octahedral and tetrahedral sites with ⁷¹Ga centers are plotted using solid circles and solid rectangles, respectively. The solid lines are calculated resonance frequencies obtained from simulations using the parameters in Table 1.

mixture of the isotopes ⁶⁹Ga and ⁷¹Ga, as did nuclei at the Ga_{II} center. Thus, four NMR absorption spectra from ⁶⁹Ga_I, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II} centers were observed in each of the crystallographic *ba*b*-and *bc*b*-planes.

The final best fits of the e^2qQ/h and η values for Ga nuclei are listed in Table 1. The nuclear quadrupole coupling constants of ${}^{69}\text{Ga}_{\text{II}}$, ${}^{71}\text{Ga}_{\text{I}}$, and ${}^{71}\text{Ga}_{\text{II}}$ centers in the β -Ga₂O₃:Cr³⁺ single crystal were 13.11 MHz, 17.74 MHz, 8.24 MHz, and 11.16 MHz at room temperature, respectively. The asymmetry parameters (η) of the ${}^{69}\text{Ga}_{\text{II}}$, ${}^{69}\text{Ga}_{\text{II}}$, ${}^{71}\text{Ga}_{\text{I}}$, and ${}^{71}\text{Ga}_{\text{II}}$ centers were 0.15, 0.86, 0.14, and 0.87 at room temperature, respectively. Simulations of resonance fields for ${}^{69}\text{Ga}_{\text{II}}$, ${}^{69}\text{Ga}_{\text{II}}$, ${}^{71}\text{Ga}_{\text{II}}$, and ${}^{71}\text{Ga}_{\text{II}}$ centers were performed using the parameters in Table 1, and simulations of rotation patterns in the ba^*b - and bc^*b -planes are shown in Figs. 3 and 4 as solid lines. The lines fit the experimental data well.

Table 1 Nuclear quadrupole coupling constants, $e^2 q Q/h$, and asymmetry parameters, η , of Ga centers in β -Ga₂O₃ single crystal.

Nucleus	$e^2 q Q/h$ (MHz)	η
⁶⁹ Ga _I	13.11 ± 0.15	0.15 ± 0.01
⁶⁹ Ga _{II}	17.74 ± 0.15	0.86 ± 0.01
⁷¹ Ga _I	8.24 ± 0.10	0.14 ± 0.01
⁷¹ Ga _{II}	11.16 ± 0.10	0.87 ± 0.01

The nuclear quadrupole coupling constants of ${}^{69}\text{Ga}_{\text{II}}$ (13.11 MHz) and ${}^{69}\text{Ga}_{\text{II}}$ (17.74 MHz) were larger than those of ${}^{71}\text{Ga}_{\text{I}}$ (8.24 MHz) and ${}^{71}\text{Ga}_{\text{II}}$ (11.16 MHz), because the electric quadrupole moment of ${}^{69}\text{Ga}$ nuclei (0.168 × 10⁻²⁴ cm²) is larger than that of ${}^{71}\text{Ga}$ nuclei (0.106 × 10⁻²⁴ cm²). The nuclear quadrupole coupling constant ratios of $e^2qQ/h({}^{69}\text{Ga}_{\text{II}})/e^2qQ/h({}^{71}\text{Ga}_{\text{I}})$ at the octahedral site and $e^2qQ/h({}^{69}\text{Ga}_{\text{II}})/e^2qQ/h({}^{71}\text{Ga}_{\text{II}})$ at the tetrahedral site were both 1.59. The asymmetry parameters of ${}^{69}\text{Ga}_{\text{I}}$ (0.15) and ${}^{71}\text{Ga}_{\text{I}}$ (0.14) at octahedral sites were the same, within experimental accuracy, because the ${}^{69}\text{Ga}$ and ${}^{71}\text{Ga}$ isotopes reside in identical octahedral environments and have the same EFGs. Similar results were obtained for ${}^{69}\text{Ga}_{\text{II}}$ (0.86) and ${}^{71}\text{Ga}_{\text{II}}$ (0.87) at tetrahedral sites.

The zero-field splitting (ZFS) parameter *D* of a paramagnetic ion is proportional to the nuclear quadrupole coupling constant $e^2 q Q/h$ [16]. ZFS parameters seem to be related to the crystal field (CF) parameters. The ZFS parameter D may be proportional to $e^2 qO/h$ if there is some relationship between CF and ZFS. There is also formal similarity, but no physical similarity, between D and e^2qQ/h in the EPR and NMR Hamiltonians. The EFG values at Ga sites can be calculated using $e^2 q Q/h$ values from NMR. The principal axes (PAs) of D tensors may be proportional to PAs of EFG tensors. The PAs of the EFG tensors for ⁶⁹Ga_I, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II} centers in the β -Ga₂O₃ single crystal are listed in Table 2. If the right-handed axis system of Ref. [14] is used, the PAs of the D tensors for Cr^{3+} in the β -Ga₂O₃:Cr³⁺ single crystal in Ref. [14] are similar to the PAs of the EFG tensors (Table 2) for ⁶⁹Ga_I and ⁷¹Ga_I centers at the octahedral site rather than the tetrahedral site. This means that Cr³⁺ ions in β -Ga₂O₃:Cr³⁺ replace the Ga₁³⁺ ions in oxygen octahedral but not Ga₁₁³⁺ ions in the oxygen tetrahedral. According to the previous report [14], Cr^{3+} ions replace Ga_1^{3+} ions in oxygen octahedral from the EPR study of Cr^{3+} in a β -Ga₂O₃. Therefore, our NMR results confirm that Cr^{3+} ions replace the Ga_1^{3+} ions in the oxygen octahedra.

Vosegaard and colleagues [12] reported ⁶⁹Ga and ⁷¹Ga NMR data from pure β -Ga₂O₃ single crystals grown by the Verneuil method. These authors observed all ⁶⁹Ga and ⁷¹Ga resonances and presented eight sets of NMR parameters in Table 1 of Ref. [12]. The eight sets of resonance lines are consistent with a twin structure because twinning characteristics leading to multiple lines in EPR and NMR spectra can be observed in their data. However, the β -Ga₂O₃:Cr³⁺ single crystal used in our study did not have a twin structure, as confirmed by preliminary X-ray, NMR, and EPR experiments. Our NMR parameters for Ga nuclei in a crystal of β -Ga₂O₃ doped with Cr³⁺ were the same as those of Ga nuclei in the pure β -Ga₂O₃ crystal [12], within experimental accuracy, as can be seen in Table 1. The influence of Cr³⁺ (0.05 mol%) on Ga nuclei in the β -Ga₂O₃ crystal is thus negligible. Wolten and Chase [17] claimed that the crystal symmetry of the β -Ga₂O₃ crystal was triclinic (space group P1) rather than monoclinic. However, the crystal symmetry of β-Ga₂O₃ single crystals used in our experiments was monoclinic, and not triclinic, based on NMR and previous EPR [14] studies. This result is consistent with those of Geller

Table 2

The direction of EFG tensor of Ga centers in β -Ga₂O₃ single crystal. θ and φ are the angles from the reference rectangular axes, *x*, *y*, and *z*.

Nucleus		V _{XX}	V_{YY}	V _{ZZ}
⁶⁹ Ga _I	θ (°)	94	89	4
	φ (°)	355	84	346
⁶⁹ Ga _{II}	θ (°)	89	6	84
	φ (°)	90	185	359
⁷¹ Ga _I	θ (°)	97	89	3
	φ (°)	355	84	341
⁷¹ Ga _{II}	θ (°)	89	6	84
	φ (°)	91	190	1

[3] and Vosegaard and colleagues [12], who found monoclinic symmetry of the β -Ga₂O₃ crystal.

3.2. Spin–lattice relaxation times of ⁶⁹Ga and ⁷¹Ga nuclei

Usually, the effect of paramagnetic ions dominates the spinphonon interaction for the relaxation time T_1 at very low temperature. Another major contribution to the spin-lattice relaxation for the nuclear spin $l \ge 1$ may be the quadrupolar interaction of the electric quadrupole moment of the nucleus with the lattice vibration. In the direct Raman process, the spin-lattice relaxation rate $1/T_1$ is proportional to the absolute temperature T [18]. On the other hand, the Raman process provides the relaxation rate proportional to the square of temperature in the high temperature limit [19–22].

We now describe recovery laws for quadrupole relaxation processes in 69 Ga (I = 3/2) and 71 Ga (I = 3/2) nuclear spin systems. The temperature dependence of the relaxation time is indicative of fluctuations in the EFG tensor driven by thermally activated motion. For I = 3/2, relaxation transition probabilities can be described by [20,23,24]:

$$W_{1} = \frac{1}{12} \left[\frac{eQ}{h} \right]^{2} \int_{-\infty}^{\infty} \langle V_{1}(0) V_{-1}(t) \rangle \exp(i\omega_{L}t) dt$$
$$W_{2} = \frac{1}{12} \left[\frac{eQ}{h} \right]^{2} \int_{-\infty}^{\infty} \langle V_{2}(0) V_{-2}(t) \rangle \exp(i2\omega_{L}t) dt$$
(1)

where W_1 and W_2 (n = 1, 2) are the ⁶⁹Ga and ⁷¹Ga spin–lattice transition rates corresponding to the $\Delta m = \pm 1$ and $\Delta m = \pm 2$ transitions, respectively.

The inversion recovery traces for the central lines of 69 Ga and 71 Ga, respectively, with dominant quadrupole relaxation in Ga₂O₃, can be represented by the following combination of two exponential functions [25,26]:

$$[S(\infty) - S(t)]/2S(\infty) = 0.5[\exp(-2W_1t) + \exp(-2W_2t)]$$
(2)

Thus, the spin-lattice relaxation time is given by:

$$1/T_1 = \frac{2}{5}(W_1 + 4W_2) \tag{3}$$

The nuclear magnetization recovery traces for ⁶⁹Ga and ⁷¹Ga were measured at several temperatures, and it was found that the inversion recovery traces could be represented by a combination of two exponential functions as in Eq. (2). The Ga₁ and Ga₁₁ resonance lines for ⁶⁹Ga and ⁷¹Ga were displaced by a paramagnetic shift to higher frequency side relative to the reference signal ($\omega_0/2\pi = 48.0372$ MHz and $\omega_0/2\pi = 61.0296$ MHz for ⁶⁹Ga and ⁷¹Ga nuclei, respectively) obtained for the ⁶⁹Ga resonance line from an aqueous solution of Ga(NO₃)₃. The isotropic chemical shift of the Ga₁ and Ga₁₁ is shifted by the Cr³⁺ doping.

The inversion recovery traces for the two central resonance lines of ⁶⁹Ga and ⁷¹Ga nuclei in Ga₂O₃ crystals showing dominant quadrupole relaxation were measured, and one trace (that of ⁶⁹Ga), as a function of delay time at room temperature, is shown in Fig. 5. The inversion recovery traces differed depending on the measurement temperature. The ⁶⁹Ga₁, ⁶⁹Ga₁, ⁷¹Ga₁, and ⁷¹Ga₁ spin–lattice transition rates W_1 and W_2 were calculated using Eq. (3); W_1 was smaller than W_2 , and W_1 and W_2 exhibited similar temperature dependencies. We measured variations in relaxation times with temperature for the four resonance lines of the ⁶⁹Ga₁, ⁶⁹Ga₁, ⁷¹Ga₁, and ⁷¹Ga₁ nuclei, respectively. The temperature dependencies of T_1 for ⁶⁹Ga₁, ⁶⁹Ga₁, ⁷¹Ga₁, and ⁷¹Ga₁ were obtained in terms of W_1 and W_2 , and the results are shown in Fig. 6. The spin–lattice relaxation rates, T_1^{-1} , increased with increasing temperature. The T_1^{-1} values of ⁶⁹Ga and ⁷¹Ga in the octahedral

Fig. 5. Inversion recovery behavior of ${}^{69}Ga_1$ and ${}^{69}Ga_{11}$ at room temperature in β -Ga₂O₃:Cr³⁺ crystals as a function of delay time *t*.

environment (Ga₁) and in the tetrahedral environment (Ga₁₁) are very similar. Our experimental T_1 observations on ⁶⁹Ga and ⁷¹Ga nuclei can be described using the equation $T_1^{-1} = AT^2 + B$; these calculations are shown as solid curves in Fig. 6.

Our data can be explained by the following relaxation mechanism: lattice vibrations are coupled to nuclear electric quadrupole moments by the dominant Raman processes (i.e., by absorption of one phonon ω and emission of another ω'). Here, the frequencies ω and ω' of the two phonons satisfy the energy conservation relation $\omega - \omega' = \omega_0$ (where ω_0 is the nuclear Larmor frequency), so that all phonons inside the phonon spectrum contribute to the relaxation processes. The Raman-induced spin–lattice relaxation rate is then independent of the Larmor frequency. From the Debye approximation for the phonon density of states [20]:

$$\left(\frac{1}{T_1}\right)_{\text{Raman}} = K \int_0^\theta \frac{\exp\{T'/T\}}{\left(\exp\{T'/T\} - 1\right)^2} \left(\frac{T'}{\theta}\right)^6 dT'$$
(4)

where θ is the Debye temperature. For $T \ge \theta$, the temperature dependence is $T_1^{-1} \propto T^2$. The temperature dependencies of the spin–lattice relaxation rates, T_1^{-1} , of ⁶⁹Ga_I, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II}

Fig. 6. Temperature dependencies of spin–lattice relaxation rates, T_1^{-1} , for ⁶⁹Ga and ⁷¹Ga in β -Ga₂O₃:Cr³⁺ crystals. Solid curves represent fits obtained using the function $T_1^{-1} = AT^k + B$.

are shown in Fig. 6. The rates are proportional to the square of temperature, T^k (k = 2), for the nuclei in the investigated temperature range (solid lines in Fig. 6). Therefore, the temperature dependencies of the ⁶⁹Ga and ⁷¹Ga relaxation rates in Ga₂O₃:Cr³⁺ crystal are in accordance with Raman processes. The Raman process (k = 2) is more effective than the direct process (k = 1) for nuclear quadrupole relaxation in our experiments.

The relaxation rates for ⁷¹Ga₁ and ⁷¹Ga₁ nuclei are greater than those for ⁶⁹Ga₁ and ⁶⁹Ga₁₁ nuclei. The large difference of the spinlattice relaxation time between ⁶⁹Ga and ⁷¹Ga can be explained by the difference between their electric quadrupole moments. When the main relaxation mechanism of the Raman process due to the electric quadrupole interaction takes place, $1/T_1$ is a function of electric quadrupole moments [20,27].

Usually, the effect of paramagnetic ions dominates the spinphonon interaction for the relaxation time T_1 at very low temperature. However, the paramagnetic Cr^{3+} impurity effect on the spin-lattice relaxation process of Ga nuclei in β -Ga₂O₃:Cr³⁺ crystal was found to be very weak in the experimental temperature range.

4. Conclusions

The nuclear quadrupole interaction constants, asymmetry parameters, and principal EFG tensor axes of the ⁶⁹Ga_I, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II} nuclei in a β -Ga₂O₃:Cr³⁺ single crystal were obtained. The nuclear guadrupole interactions of the host nuclei in the crystal were investigated by determining NMR parameters and spin-lattice relaxation times. Four sets of resonance lines for Ga nuclei were observed in the crystallographic ba^*b - and bc^*b planes. Considering crystal symmetry and Ga isotope distribution, the four sets of lines were found to originate from ⁶⁹Ga_I and ⁷¹Ga_I centers at oxygen octahedra and ⁶⁹Ga_{II} and ⁷¹Ga_{II} centers at oxygen tetrahedra. The $e^2 q Q/h$ and η values were 13.11 MHz and 0.15 for the ⁶⁹Ga_I center, 17.74 MHz and 0.86 for the ⁶⁹Ga_{II} center, 8.24 MHz and 0.14 for the ⁷¹Ga_I center, and 11.16 MHz and 0.87 for the ⁷¹Ga_{II} center. The principal X, Y, and Z EFG tensor axes for the four Ga centers were obtained. The $e^2 q O/h$ and η values of the four Ga centers in a β -Ga₂O₃ single crystal doped with Cr³⁺ were the same as those of a pure β -Ga₂O₃ single crystal in Ref. [12], within the experimental accuracy; the only difference is that a twin structure was seen in Ref. [12] but not in the present work. We confirmed that Cr³⁺ impurity ions replace Ga₁³⁺ ions, by comparison of the EFG tensor axes for Ga nuclei and the ZFS tensor axes for the Cr³⁺ ion.

The relaxation mechanism was investigated by determining the spin-lattice relaxation times of the ⁶⁹Ga_I, ⁶⁹Ga_{II}, ⁷¹Ga_I, and ⁷¹Ga_{II} nuclei in a β -Ga₂O₃:Cr³⁺ single crystal. The e^2qQ/h value for ⁶⁹Ga was larger than that for ⁷¹Ga, in line with the finding that the T_1 of ⁶⁹Ga was longer than that of ⁷¹Ga. The dominant relaxation mechanism for nuclei possessing electric quadrupole moments involves coupling of these moments to thermal fluctuations in the local EFGs via Raman spin-phonon processes. The relaxation rates of the ⁶⁹Ga and ⁷¹Ga nuclei were found to increase with increasing temperature, and could be described using the equation $T_1^{-1} = AT^k + B$. The temperature dependence of the ⁶⁹Ga and ⁷¹Ga relaxation rates in β -Ga₂O₃:Cr³⁺ crystals is in accordance with the well-known Raman process, as $T_1^{-1} \propto T^2$. The T_1 values for ⁶⁹Ga and ^{71}Ga in $\beta\text{-Ga}_2\text{O}_3\text{:}\text{Cr}^{3+}$ crystals can be explained in terms of a relaxation mechanism in which lattice vibrations are coupled to the nuclear electric quadrupole moments. Usually, the effect of paramagnetic ions dominates the spin-phonon interaction for the relaxation time T_1 at very low temperature. However, the paramagnetic impurity effect on the spin-lattice relaxation process of Ga nuclei in β -Ga₂O₃:Cr³⁺ crystal was found to be very weak in the experimental temperature range.

References

- H.H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga₂O₃, Phys. Rev. 140 (1965) A316–A319.
- [2] N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Anisotropy of electrical and optical properties in β-Ga₂O₃ single crystals, Appl. Phys. Lett. 71 (1997) 933–935.
- [3] S. Geller, Crystal structure of β-Ga₂O₃, J. Chem. Phys. 33 (1960) 676–684.
- [4] T. Xiao, A.H. Kitai, G. Liu, A. Nokua, J. Barbier, Thin film electroluminescence in highly anisotropic oxide materials, Appl. Phys. Lett. 72 (1998) 3356–3358.
- [5] T. Minami, T. Shirai, T. Nakatani, T. Miyata, Electroluminescent devices with Ga₂O₃: Mn thin-film emitting layer prepared by sol-gel processes, Jpn. J. Appl. Phys. 39 (2000) L524–L526.
- [6] Z. Hajnal, J. Miro, G. Kiss, F. Reti, P. Deak, R.C. Herndon, J.M. Kuperberg, Role of oxygen vacancy defect states in the n-type conduction of β-Ga₂O₃, J. Appl. Phys. 86 (1999) 3792–3796.
- [7] R. Roy, V.G. Hill, E.F. Osborn, Polymorphism of Ga₂O₃ and the system Ga₂O₃-H₂O, J. Am. Chem. Soc. 74 (1952) 719–722.
 [8] H. Makino, S. Nakamura, K. Matsumi, Lattice parameter variations in
- [8] H. Makino, S. Nakamura, K. Matsumi, Lattice parameter variations in Czochralski grown gadolinium gallium garnet single crystals, Jpn. J. Appl. Phys. 15 (3) (1976) 415–419.
- [9] J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium oxide, Acta Crystallogr. C52 (1996) 1336–1338.
- [10] SGTE Database SPS96TO2 (pure substances), 1996.
- [11] M. Ueltzen, The verneuil flame fusion process: substances, J. Cryst. Growth 132 (1-2) (1993) 315–328.
- [12] T. Vosegaard, I.P. Byriel, L. Binet, D. Massiot, H.J. Jakobsen, Crystal structure studies by single crystal NMR spectroscopy. ⁷¹Ga and ⁶⁹Ga single crystal NMR of β -Ga₂O₃ twins, J. Am. Chem. Soc. 120 (1998) 8184–8188.
- [13] W. Gunsser, K. Rohwer, Detremination of the correlation between the crystal field axis system and the crystallographic axes in chromium-doped β -Ga₂O₃ by EPR, Phys. Status Solidi B 116 (1983) 275–278.

- [14] T.H. Yeom, I.G. Kim, S.H. Lee, S.H. Choh, Y.M. Yu, Electron paramagnetic resonance characterization of $Cr^{3\ast}$ impurities in a $\beta\text{-}Ga_2O_3$ single crystal, J. Appl. Phys. 93 (2003) 3315–3319.
- [15] M.J. Mombourquette, J.A. Weil, D.G. McGavin, Operating Instruction for Computer Program EPR-NMR Ver. 6.0, University of Saskatchewan, Canada, 1995.
- [16] G. Burns, Polarizabilities and antishielding factors of 10 and 18 electron closed shell atoms, J. Chem. Phys. 31 (1959) 1253–1255.
- [17] G.M. Wolten, A.B. Chase, Determination of the point group of β-Ga₂O₃ from morphology and physical properties, J. Solid Chem. 16 (1976) 377–383.
- [18] T.H. Yeom, K.T. Han, S.H. Choh, K.S. Hong, ⁷Li NMR relaxation in a LiTaO₃ single crystal, J. Korean Phys. Soc. 28 (1995) 113–115.
- [19] R.L. Mieher, Quadrupolar nuclear relaxation in the III-V compounds, Phys. Rev. 125 (1962) 1537–1551.
- [20] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford, 1961 (Chapters I and IX).
- [21] T.H. Yeom, K.S. Hong, I. Yu, H.W. Shin, S.H. Choh, Spin-lattice relaxations of ⁹Be and ²⁷Al in single crystalline alexandrite, J. Appl. Phys. 82 (1997) 2472– 2475.
- [22] J. Van Kranendonk, Theory of quadrupolar nuclear spin-lattice relaxation, Physica 20 (1954) 781–800.
- [23] J.J. van der Klink, D. Rytz, F. Borsa, U.T. Hochli, Collective effects in a randomsite electric dipole system: KTaO₃: Li, Phys. Rev. B27 (1983) 89–101.
- [24] R. Blinc, J. Dolinsek, B. Zalar, Low temperature properties of proton and deuteron glasses, Z. Phys. B104 (1997) 629–634.
- [25] B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, Cambridge, 1997.
- [26] J. Dolinsekk, D. Arcon, B. Zalar, R. Pirc, R. Blinc, R. Kind, Quantum effects in the dynamics of proton glasses, Phys. Rev. B 54 (1996) R6811–R6814.
- [27] C.P. Poole, H.A. Farach, Relaxation in Magnetic Resonance, Academic Press, New York, 1971 (Chapter 10).